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Outline

o MLDS Center’s research agenda

0 Discuss alternate methods to address Question 12
0 Value-added modeling

o Utilizing propensity scores

0 Obtain ideas and feedback from you about important
variables and considerations for use of the methods
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Research agenda

o Approved by the MLDS Governing Board
0 https://mldscenter.maryland.gov/ResearchAgenda.html

o Centered on topical areas:
0 K-12 Readiness
o Postsecondary Readiness and Access
o Postsecondary Completion
o Workforce Outcomes

0 21 broad questions
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Question #12
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Value-added modeling
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Value-added modeling
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Value-added modeling

m)w does it work? \

1. Use statistical models (e.g., multivariate regression,
multilevel modeling) to predict students’ outcomes from
their past performance and possibly other variables (e.g,
SES, past experience, etc.)

2. Compare the predicted scores with observed scores

3. The difference between the predicted and actual

scores is attributed to the cluster membership (e.g.,
wcher/school/institution) /
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Value-added models, conceptually

/Comparing the
average outcomes

O
\
o 8%98

SI0e

of students)...

(without considering
the “market basket”

o

)
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Value-added models, conceptually

Reardon and Raudenbush (2009)

\ one potential outcome per schoo

. /Comparing the )
L s average outcomes
< o 4 after conditioning on
S i students’
O characteristics...
. )
SAT, centered
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Value-added model assumptions
mvo key assumptions (among others) \

1) Manipulability
“It is theoretically meaningful to define
the potential outcome of each student if
assigned to each of the J schools,
ensuring that each student has at least

III

)
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Value-added model assumptions

Gvo key assumptions (among others) \
Reardon and Raudenbush (2009)
1) Manipulability
2) Functional form
“The functional form of the model
correctly specifies the potential outcomes
even for types of students who are not

k present in a given school” /
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Value-added model assumptions

ﬁ.if groups look very different on background \
characteristics the results are likely to be based

on untestable modeling assumptions and
extrapolation...”

“...impossible to estimate the effect
without making heroic assumptions...”

\@ubin, Stuart & Zanutto, 2004) /
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Concerns about

value-added model assumptions

/What if the
relation between
2 the covariates and

the outcome differ
\ across clusters? Y

SAT, centered

[___d
i;f MLDS CENTER [
Maryland Longitudinal Data System

o
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Concerns about
value-added model assumptions

o o

if you do not have
e the data to see it?

Furthermore, what

SAT, centered

| MLDSC Draft 5/4/17 |



Maryland Longitudinal Dat

|;E MLDS CENTER —

Concerns about

value-added model assumptions

, We would
‘ g conclude a
< i { different ranking of
3 o) institutions...
i G
SAT, centered
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Concerns about
value-added model assumptions
i ... than “truth”
. o

SAT, centered
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Concerns about

value-added model assumptions
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Can we consider a different approach?
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The naive “treatment effect”
estimates...

Degree Outcomes after Four Years,
2010-11 High School Graduates Attending Four-Year MD Institutions
Full-time in AY 2011-12
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Do we satisfy the assumption of
manipulability?
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SATM

-200 -

-400

Are we comparing apples and

oranges?

Distribution of SATM by COLLEGE
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Are we comparing apples and

oranges?
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Perhaps we can just condition on
covariates in a multilevel model?

0 In a typical value added analysis, we would run a
model wherein we condition on student (input)
characteristics

P(y. =1| X
For degree In (v =11X) = [, + Zﬂp X i
attainment: 1-P(y; =1 X)
Bo = Voo + Uy
ﬂp = 7/p0
For wages: Yy =B+ Zﬂpx oi + i
Bo =7+ Uo
ﬁp = 7/p0
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Predicted 4-Year graduation rates,
naive and conditioned
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Alternate approach: Separate the
outcome model and conditioning model

ﬂlhat if we consider utilizing propensity score methods
to condition pre-existing groups?

1) Calculate multinominal propensity scores
_( P(COLLEGE, =z|X)
ogit : = o, + X
[P(COLLEGEi =Z|X)J fou+ 2P X
2) Examine common support

3) Select a conditioning method and evaluate balance
4) Examine outcomes across (multiple) conditioned

Qmples J
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Propensity density for one target
college (z) — College 9
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Propensity distributions for one target
college (z) — College 9

Another
view...
Are they
similar
enough to | }
compare? [ H
oI TR
“common PRI T T S T Y WG S 11 % A A A
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Propensity distributions for another
target college (z) — College 15
Are they
similar
enough to
compare?
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Propensity distributions for another
target college (z) — College 19
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Propensity distributions for another
target college (z) — College 19
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How can we examine conditioned
“treatment effects” of colleges?
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Naive and WBO predicted graduation
rates for colleges with common support

of college 19
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A different outcome: Value-added

results

Predicted Quarterly Wage (for those with 4-year
degree), Naive and Conditioned
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WBO predicted quarterly age for
colleges with common support of
college 19
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Summary
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